Advertisements
Skip to content
November 7, 2019 / porton

Funcoid is a “Structure” in the Sense of Math Logic

A few seconds ago I realized that certain cases of pointfree funcoids can be described as a structure in the sense of mathematical logic, that is as a finite set of operations and relational symbols.

Precisely, if a pointfree funcoid f is defined on a lattice (or semilattice) with a least element \bot, then because a lattice (semilattice) is a relational structure defined by a set of propositional formula, then we have the following operations and relations:

  • relation [f]
  • meet and join operations on our lattice
  • the least element of the lattice (a constant symbol)

and identities:

  • the standard identities of lattice considered as an algebraic structure (and also the obvious identities for the least element)
  • \lnot(\bot [f] y)
  • \lnot(x [f] \bot)
  • i\cup j[f]k \Leftrightarrow i[f]k\lor j[f]k
  • k[f]i\cup j \Leftrightarrow k[f]i\lor k[f]j

What are applications of the curious fact that every funcoid is a structure defined by propositional formulas? I don’t yet know.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers like this: