Skip to content
August 24, 2013 / porton

Conjecture: Distributivity of a lattice of funcoids is not provable without axiom of choice

Conjecture Distributivity of the lattice \mathsf{FCD}(A;B) of funcoids (for arbitrary sets A and B) is not provable in ZF (without axiom of choice).

It is a remarkable conjecture, because it establishes connection between logic and a purely algebraic equation.

I have come to this conjecture in the following way:

My proof that the lattice of funcoids is distributive uses the fact that it is an atomistic lattice. That \mathsf{FCD}(A;B) is an atomistic lattice in turn uses the fact that the lattice of filters on a set is atomically separable and it follows from the fact that the lattice of filters on a set is an atomistic lattice.

But that the lattice of filters on a set is an atomistic lattice cannot be proved without axiom of choice. So the axiom of choice is used in my proof of distributivity of the lattice of funcoids.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers like this: