Skip to content
April 1, 2013 / porton

A new simple proposition about generalized limits

I’ve added the following almost trivial proposition to the draft of my book “Algebraic General Topology. Volume 1”:

Proposition \tau \left( y \right) = \mathrm{xlim}\, \left( \left\langle \mu \right\rangle^{\ast} \left\{ x \right\} \times^{\mathsf{FCD}} \uparrow^{\mathrm{Base}\, \left( \mathrm{dom}\, \nu \right)} \left\{ y \right\} \right) (for every x). Informally: Every \tau \left( y \right) is a generalized limit of a constant funcoid.

Note that \tau is the function which transforms from simple numbers to values of generalized limits.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers like this: