Skip to content
August 29, 2012 / porton

A conjecture related with subatomic product

With subatomic products first mentioned here and described in this article are related the following conjecture (or being precise three conjectures):

Conjecture For every funcoid f: \prod A\rightarrow\prod B (where A and B are indexed families of sets) there exists a funcoid \Pr^{\left( A \right)}_k f defined by the formula

x \mathrel{\left[ \Pr^{\left( A \right)}_k f \right]} y \Leftrightarrow     \prod^{\mathsf{\mathrm{RLD}}} \left( \left\{ \begin{array}{ll}       1^{\mathfrak{F} \left( \mathrm{Base} \left( x \right) \right)} & \mathrm{if}       i \neq k ;\\       x & \mathrm{if} i = k     \end{array} \right. \right) \mathrel{\left[ f \right]}     \prod^{\mathsf{\mathrm{RLD}}} \left( \left\{ \begin{array}{ll}       1^{\mathfrak{F} \left( \mathrm{Base} \left( y \right) \right)} & \mathrm{if}       i \neq k ;\\       y & \mathrm{if} i = k     \end{array} \right. \right)


  1. every filters x and y;
  2. every principal filters x and y;
  3. every atomic filters x and y.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers like this: